201 research outputs found

    Molecular approaches to the study of ecdysozoan evolution

    Get PDF
    The Ecdysozoa is a large clade of animals comprising the vast majority of living species and some of the most studied invertebrate models, including fruitflies and nematodes. Some of the relationships between major ecdysozoan groups remain uncertain, however, undermining comparative studies and impairing our understanding of their evolution. One hotly debated problem is the position of myriapods which have been recently grouped according to molecules with chelicerates and not with insects and crustaceans as predicted by morphological evidence. Other disputed problems are the position of tardigrades, the position of hexapods within the crustaceans as well as the mutual affinities of the nematodes and priapulid worms. Molecular systematics of the ecdysozoans is complicated by rapid divergence of the main lineages (possibly evidenced in the Cambrian explosion) followed by a subsequent long period of evolution. This may have resulted in a dilution of the historical phylogenetic signal and an increased likelihood of encountering systematic errors of tree reconstruction. This problem is exacerbated by many lineages being poorly represented in current molecular datasets, as sequencing efforts have been biased toward lab models and economically relevant species. In order to overcome problems of systematic error, I have assembled various large mitochondrial and phylogenomic datasets, including new data from undersampled tardigrades, onychophorans and especially myriapods. I analysed these datasets using the most recent evolutionary models. I have developed two new models in order to describe the evolutionary processes of metazoan mitochondrial proteins more accurately. My analyses of multiple datasets suggest that the grouping of myriapods plus chelicerates found by previous authors is likely to be the result of systematic errors; I find support for a closer relationships between myriapods and a group of insects plus crustaceans (the Mandibulata hypothesis). My analyses also support a paraphyletic origin of Cycloenuralia (nematodes and priapulids) and a sister group relationships between tardigrades, onychophorans and euarthropods in accordance with a single origin of legged ecdysozoans, the Panarthropoda. Finally, results support a monophyletic group of hemimetabolan insects. The majority of the results reconcile molecules and morphology, while others shade new light onto arthropod systematics. The evolutionary implications of these systematic findings as well as methodological advances are discussed

    Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma

    Get PDF
    Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma ‘Candidatus Phytoplasma mali’ to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a speciesspecific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with APphytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competenc

    Genome-scaled phylogeny of Saccharomyces cerevisiae from spontaneous must fermentations

    Get PDF
    Modern winemakers commonly inoculate selected S. cerevisiae strains in must to obtain controlled fermentations and reproducible products. However, wine has been produced for thousands of years using spontaneous fermentations from wild strains, a practice that is experiencing a revival among small wine producers. Despite the widespread usage of such strains in the past, there is much to know about their ecology, evolution and functional potential. For example, the reciprocal affinities of these strains within the S. cerevisiae phylogeny have yet to be discovered, as well as the degree of their biodiversity and their impact on wine terroir. To fill this knowledge gap, we aim at characterising at strain level the S. cerevisiae present in spontaneously fermented musts sampled across Italy. We set up a protocol based on polyphenols-removing prewashes, followed by whole-genome shotgun sequencing at a depth of 5Gb of DNA per sample. We performed both an assembly-free analysis to reconstruct the strain-level phylogeny of S. cerevisiae strains using the species-specific-marker based StrainPhlAn, and the reconstruction of Metagenome-Assembled Genomes of these strains for downstream functional analyses. To plan conservation acts in a scenario of continuous climate change, we aim at isolating and maintaining strains of interest. We will present preliminary results from the analysis of spontaneous musts sampled at different fermenting stages

    Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies

    Get PDF
    © The Author(s) 2017 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Get PDF
    © 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships

    Get PDF
    Background Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. Results The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. Conclusions The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships

    Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations

    Get PDF
    Funding This work was supported by NIH NHGRI grant R01HG005220, NIDDK grant R24DK110499, NIDDK grant U54DE023798, and CMIT grant 6935956 to C.H., and by the European Research Council (ERC-STG project MetaPG-716575), MIUR “Futuro in Ricerca” RBFR13EWWI_001, the European Union (H2020-SFS-2018-1 project MASTER-818368 and H2020-SC1-BHC project ONCOBIOME-825410), and the National Cancer Institute of the National Institutes of Health (1U01CA230551) to N.S. Further support was provided by the Programma Ricerca Budget prestazioni Eurac 2017 of the Province of Bolzano, Italy to F.M., and by the EU-H2020 (DiMeTrack-707345) to E.P. and N.S. D.B., S.H.D., P.L., A.W.W. and The Rowett Institute received core funding support from the Scottish Government Rural and Environmental Sciences and Analytical Services (SG-RESAS). Availability of data and materials All datasets used in this study are publicly available and matched with their respective PMID (Additional file 5). The high-quality E. rectale MAGs in fasta format and a metadata file are available at http://segatalab.cibio.unitn.it/data/Erectale_Karcher_et_al.html and in the following Zenodo repository: https://doi.org/10.5281/zenodo.3763191 [80]. The two new isolate genomes L2–21 and T3BWe13 have been uploaded to NCBI and can be found in RefSeq under the accession numbers GCF_008122485.1 [81] and GCF_008123415.1 [82], respectively.Peer reviewedPublisher PD

    Reconstruction of ancient microbial genomes from the human gut

    Get PDF
    Loss of gut microbial diversity1–6 in industrial populations is associated with chronic diseases7, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces.Ethics Overview of samples Reference-based taxonomic composition De novo genome reconstruction Methanobrevibacter smithii tip dating Functional genomic analysis Discussion Online content Method

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis
    corecore